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ABSTRACT
Over the last 12 years the LOCKSS Program at Stanford has
developed and deployed an open source, peer-to-peer sys-
tem now comprising about 200 LOCKSS boxes in libraries
around the world preserving a wide range of web-published
content. Initially supported by NSF, and subsequently by
the Mellon Foundation, Sun Microsystems and NDIIPP, the
program has since 2004 been sustainable, funded by the li-
braries using it. The program won an ACM award for break-
through research in fault and attack resistance in peer-to-
peer systems.

Since it was designed initially for e-journals, the system’s
design is unusual; it is driven primarily by copyright law.
The design principles were:

• Minimize changes to existing legal relationships such
as subscription agreements.

• Reinstate the purchase model of paper. Each library
gets its own copy to keep and use for its own readers
as long as it wants without fees.

• Preserve the original, just what the publisher pub-
lished, so that future readers will see all the intellectual
content, including the full historical context.

• Make access to the preserved content transparent to
the reader.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries; D.4.5 [Operating Systems]: Reliability

General Terms
Design, Copyright, Reliability

Keywords
Digital preservation.
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1. INTRODUCTION
Over the last twelve years the LOCKSS1 Program at the

Stanford Libraries has developed and deployed a free, open
source, peer-to-peer system now comprising about 200 LOCKSS
boxes in libraries around the world preserving a wide range
of web-published content. The impetus for the program
came from Stanford Libraries’ pioneering work in e-journals;
in May 1995 their HighWire Press [12] unit unveiled the
Web edition of the Journal of Biological Chemistry. The
sudden advent and immediate popularity of the Web ver-
sions of expensive and important academic journals forced
an unexpected and unwelcome transition upon librarians:
from purchasing a copy of the journal to renting access to
the publisher’s copy. While rental satisfied the librarians’
responsibility to current readers, it did not satisfy their re-
sponsibility to future readers. It did not provide “perpetual
access”.

2. DESIGN
One way to satisfy the goal of providing libraries with

perpetual access to the e-journal content to which they sub-
scribed was commonly suggested. This involved the concept
of a third-party archive, which would acquire e-journal con-
tent from the publisher and re-publish it. In addition to
subscribing to the journal itself, libraries would subscribe
to the archive. If they found themselves having to cancel a
subscription, they could apply to the archive to access the
archive’s copy of content the journal had published during
the period their subscription was valid.

This concept was presented as cancellation insurance. But
another way of looking at it was as a second instance of ex-
actly the problem it was trying to solve. Access to the can-
celled content would be provided only as long as the library
continued to subscribe to the archive. This fundamental
flaw in the third-party archive model was compounded by
the very significant legal and business difficulties to which
it gave rise.

The nature of technology markets, with increasing re-
turns to scale [3] or network effects, is to be dominated
by a single supplier. Thus it was likely that there would
be one such archive containing the content from every pub-
lisher. Publishers were to be asked to give, or license on
non-commercial terms, their intellectual property assets to
this archive, which was both an actual competitor, in that
the funds libraries used to pay their archive subscription
came from the same budget as their subscriptions to the

1LOCKSS is a trademark of Stanford University.



publishers, and a potential competitor, in that it held and
was able to re-publish the content of every publisher. The
negotiations with the publishers leading to an agreement to
provide the archive with content would thus be prolonged,
difficult and expensive2.

The LOCKSS Program was started with a “Small Grant
for Exploratory Research” (SGER) from the NSF. Prolonged
and expensive negotiation with lawyers from the publishers
was not simply unattractive, it was unaffordable. The de-
sign of the system was thus driven by the need to satisfy the
demands of both copyright law (in particular the Digital
Millenium Copyright Act (DMCA) [1]) and the librarians.
The original design principles were:

• Minimize changes to existing legal relationships such
as subscription agreements.

• Reinstate the purchase model of paper, so that each
library gets its own copy to keep and use for its own
readers as long as it wants without fees.

• Preserve the original, just what the publisher pub-
lished, so that future readers will see all the intellectual
content, including the full historical context.

• Make access to the preserved content transparent to
the reader, so that librarians would not need to edu-
cate their readers to take advantage of the system.

These principles led to the key aspects of the original de-
sign [33]:

• Publishers would grant permission for subscribers to
collect and preserve the content to which they sub-
scribed by placing a permission statement on a web
page visible only to subscribers.

• Libraries would collect the content, including the per-
mission statement, by crawling the publisher’s web site
using their subscription access. This avoided the need
to develop a separate mechanism to determine whether
a library had permission and a subscription for the
content. If they did not they wouldn’t be able to get
the content. And it avoided the need to modify the
publisher’s existing systems, something they were re-
luctant to do.

• Libraries’ preserved content would act as a proxy for
the publisher’s web site. If the publisher was unable to
supply it, or refused to do so because the subscription
was no longer valid, the preserved content would be
supplied. Otherwise, the publisher’s content would be
supplied to the library’s reader.

• Only the library’s readers would have access to the
content, and the publisher would see all accesses to
the content as if they had been made directly. This
ensured that the system would not add to the risk of
content theft, nor prevent publishers profiting from the
hits on their web pages.

This design led to an unusual opportunity. Clearly, any
system for long-term digital preservation must be highly
fault-tolerant, and thus replicated. Because each library had

2This problem was not to be resolved until the Mellon Foun-
dation applied its very considerable leverage in 2002.

to maintain its own copy of the content as evidence that it
was doing so with the permission of the publisher, the sys-
tem as a whole had many replicas. Instead of the question
normally at the heart of the design of fault-tolerant sys-
tems, “how few replicas do we need?”, the question for the
LOCKSS system was “what can we do with the abundance
of replicas to increase fault-tolerance?”.

The obvious next question, too infrequently asked of dig-
ital presevation systems [41], is “against what threats is the
content being preserved?”. These threats would cause the
faults the system must tolerate. Many digital preservation
systems have implictly adopted the threat model of Jeff
Rothenberg’s influential 1995 article [35]; this has focused
attention to an unwarranted extent on the threat of format
obsolescence [31]. The LOCKSS system’s threat model [34]
included format obsolescence [32] and “bit rot” [30], but was
also based in the experience of:

• Paper research libraries, which regularly encounter at-
tempts by fanatics [43] and governments [25] to sup-
press information, and disasters such as fire [2] and
flood [21].

• Large computing facilities, whose experience shows that
data loss is frequently caused by operator error [28] and
insider abuse [17].

Libraries in the paper world are used to peer-to-peer rela-
tionships, such as inter-library loan and copying. A peer-to-
peer architecture for the LOCKSS system was thus natural,
and essential to defense against threats such as operator er-
ror and insider abuse. These threats spread via the trust re-
lationships inherent in centralized, hierarchically controlled
systems.

3. IMPLEMENTATION
The initial NSF SGER supported the development of pro-

totype nodes, called LOCKSS boxes, that formed a peer-to-
peer network. Each held its library’s copies of the subscribed
content, which it obtained by crawling the publisher’s web
site. The nodes communicated with each other, locating
other copies of the same content and regularly comparing
them, using a peer-to-peer anti-entropy protocol based on
voting on the message digest (digital hash) of the content.
If, using this protocol, a node discovered that its copy dis-
agreed with the consensus of the other nodes, it could re-
quest that its copy be repaired from a node that did agree
with the consensus. A node receiving a repair request would
supply the repair only if it remembered agreeing with the
requester as to the content in the past. Thus the protocol
could be used only to repair a previously good copy obtained
from the publisher, not to violate the publisher’s copyright
by obtaining an initial copy from another library. The pro-
totype was implemented as a long-lived daemon process in
Java.

The prototype was deployed in 2000 to 6 libraries using
test content from HighWire Press journals Science and the
British Medical Journal, by kind permission of their publish-
ers. The test program was later roughly doubled in size with
funding from the Mellon Foundation and Sun Microsystems.

Experience with the prototype was encouraging enough
that the Mellon Foundation and the NSF funded the de-
velopment of a production system. This was a complete
re-write of the system, incorporating the lessons of the pro-
totype:



• The prototype clearly demonstrated that the LOCKSS
approach of a peer-to-peer distributed digital preserva-
tion system with low-cost nodes at individual libraries
was technically, legally and economically feasible.

• The prototype showed that crawling the publisher’s
web sites was a viable method for collecting the con-
tent, and that it allowed a very faithful representa-
tion of the reader’s experience to be preserved. How-
ever, the variation among publishers and the extent of
the detailed control of the crawling process required to
keep relations with the publisher harmonious, required
that publisher-specific knowledge be encapsulated in a
set of Java classes interfacing to the rest of the daemon
via a “plug-in” interface.

• Adequate reliability required that the nodes in the
LOCKSS network be extremely secure. Administer-
ing systems to this level of security was seen as diffi-
cult for typical library staff [11]. The production sys-
tem was packaged as a network appliance based on
the security-concious OpenBSD operating system, but
running from a read-only CD rather than from soft-
ware installed on a read-write hard disk [29]. “Live
CDs” like this have become popular.

• The prototype’s anti-entropy protocol used IP multi-
cast, which turned out to be impractical. It was re-
placed by a TCP-based gossip protocol called LCAP
(Library Content Audit Protocol) version 1.

Further research showed that the design of LCAP ver-
sion 1 was flawed; it was vulnerable to several potential at-
tacks [22], and it was later discovered that the improved
version 2 protocol under development to replace it was vul-
nerable to a related attack. A team under Prof. Mary
Baker at Stanford’s Computer Science Dept. developed an
entirely new approach to tolerating faults in and attacks
against peer-to-peer networks without requiring central ad-
ministration or long-term secrets [19, 8], that exploited the
abundance of replicas as the basis of its defenses. For this
work they were awarded “Best Paper” at the 2003 SOSP
workshop, and an ACM Student Research award. This re-
search forms the basis for the current, version 3, anti-entropy
protocol although the complete set of defenses has yet to be
fully implemented.

4. DEPLOYMENT
The production system was deployed in a beta test to 50

libraries in 2002, and went in to production in 2004. The
number of LOCKSS boxes in production use is about 200.
A LOCKSS box preserving all the content available for the
public network that libraries use to preserve subscription
and open access needs at least 2 terabytes of storage.

LOCKSS boxes’ ease of use and simple you-scratch-my-
back-I’ll-scratch-yours organizational model proved attrac-
tive in fields other than e-journals. With support from the
Library of Congress’ National Digital Information Preserva-
tion Program (NDIIPP), a group of libraries in the South-
East of the U.S. came together as the MetaArchive [38] to
preserve each other’s collections of local culture and his-
tory. This was the first Private LOCKSS Network (PLN), a
network of nodes separate from the main, public network
open only to members of a specific organization. PLNs

have proliferated since, preserving many other genres of con-
tent, including state records, government documents, and
datasets. The largest LOCKSS boxes in use in PLNs have
about 16 terabytes of storage, they are the nodes in the
CLOCKSS network. This is a community-governed dark
archive building comprehensive collections of content from
large and small e-journal publishers. There will eventually
be about 15 nodes in the network scattered across the globe.

5. INTEROPERABILITY
There are four aspects of interoperability among digital

preservation systems of interest; Content, Metadata, Audit

and Module interoperability.

5.1 Content Interoperability
As technologies evolve and institutions rise and fall, it will

at times be necessary to transfer content from one digital
preservation system to another.

LOCKSS boxes contain collections of web content, the
result of web crawls. The standard for representing such
collections is WARC files [15], an enhancement of the Inter-
net Archive’s ARC file format [5], which packs the content
and headers of many URLs into a single large file.

LOCKSS box content can be exported as ARC files in
one of two ways; the LOCKSS box can export the ARC
files directly, or the Heritrix web crawler [23] can crawl the
original web site using a special proxy implemented in the
LOCKSS box. In both cases the resulting ARC file appears
as if Heritrix had crawled the original web site without the
involvement of the LOCKSS box3. Note that the special
proxy used by Heritrix could be used by any other Web
crawler; exactly the same content can be harvested from
the LOCKSS box at exactly the same URLs where it was
originally found. Thus, although it can use ARC files as an
export format, it is in no way dependent on doing so.

LOCKSS boxes can also import content in ARC format
directly. In this case the result is as if the LOCKSS box had
crawled the original web site instead of Heritrix. Content
has been transferred from the Internet Archive’s Archive-It
service [14] to a PLN run by the University of Rochester.
ARC file import is a special case of LOCKSS boxes’ ability
to import packaged content. Variants of this capability are
used by the CLOCKSS program to import e-journal source
file content in the formats used by Elsevier [7] and Springer.
Again, although LOCKSS boxes can use ARC as an import
format, they are in no way dependent on doing so.

These mechanisms are being updated to use the standard
WARC format. LOCKSS currently stores web content as
individual files in a POSIX file system. This part of the
system is also being upgraded to store the content in WARC
files, in a way similar to that of the Wayback Machine [13].

5.2 Metadata Interoperability
There are two kinds of metadata of interest for preser-

vation; format and other metadata relevant to ensuring the
future readability of the content, and bibliographic metadata
relevant to finding the content.

The standard for format metadata for Web content is the
MIME type in the HTTP headers, and additional “magic
number” information in the HTTP payload. LOCKSS boxes
preserve both the HTTP headers and the payload for every

3Except for some additional HTTP headers



URL, and thus have adequate format metadata for render-
ing.

The LOCKSS approach for format obsolescence is to pre-
serve the original bits and, if necessary, transparently create
a temporary access copy of the content in a less-obsolete
format when a reader requests access [32]. There is thus no
need to collect and preserve the output from format identi-
fication and verification tools such as JHOVE [10]; it is in
any case doubtful whether doing so actually contributes to
future readability [31].

The widely-accepted Dublin Core standard for bibliographic
metadata is useful but not in practice strict enough to enable
interoperability without extensive human intervention [36].
This is not feasible at the scale involved in preserving e-
journals.

LOCKSS boxes are capable of extracting the article-level
bibliographic metadata contained in the Web content they
harvest. Most e-journal publishers include the DOI and
Dublin Core metadata in the Web articles they publish,
some in HTML meta-tags, some in the text. The LOCKSS
plugins contain publisher-specific code that knows where
this information can be found, how to convert it to a internal
standard representation, and how to relate it to a system-
wide database of journal- and volume-level metadata called
the “title database” (TDB).

The German Research Foundation (DFG) is funding LuKII,
a collaboration between the German National Library (DNB),
Humboldt University and the LOCKSS team to investigate
the use of METS to facilitate the metadata aspects of inter-
operation between the DNB’s KOPAL system and a LOCKSS
PLN run by Humboldt University [36].

5.3 Audit Interoperability
The requirements for audits of digital preservation sys-

tems are discussed in Section 6.1. Here we simply observe
that if two or more systems claim to be preserving the same
content, it would be useful for them to be capable of per-
forming a mutual audit, proving to each other that they each
had a copy of the content in question, and that their copies
were the same. A protocol for doing so would be valuable;
none has so far been standardized.

This process of mutual audit is the heart of the LCAP
anti-entropy protocol. One LOCKSS box calls a poll on
some content C by inviting a number of other boxes hold-
ing the same content and supplying them with a random
nonce N1. Invitees, or voters, each generate a second ran-
dom nonce N2, compute the digest H(N1, N2, C) and re-
turn N2, H(N1, N2, C) to the poller. The poller tallies these
votes by comparing the values they contain for the hash with
the voter’s values of N2 and C, with the values the poller
computes using its value of C and the various values of N2
in the votes 4. If the values agree, the voter has proved to
the poller that their copies of the content C are identical.

The messages in the LCAP protocol are in XML and con-
tain only opaque string identifiers for the content, hash val-
ues and timne stamps. The actions needed to respond to
them are simple and well-defined. These attributes make
the LCAP protocol a suitable candidate for a mutual audit
protocol standard.

Detection of loss or damage to a replica is one half of an
anti-entropy protocol. In the digital preservation literature

4The precise details of this protocol and how they defend
against the various possible attacks are described in [19].

this half is usually described as a fixity check, and is nor-
mally assumed to be accomplished by means of a message
digest stored in associated with the content it refers to. A
mismatch between the stored digest and the stored content
indicates damage. But is this damage to the content, or to
the digest? Insider abuse or external attack, both realistic
threats, could lead to both the content and the digest being
modified so as still to match, so a match is not actually a
guarantee of fixity. Further, either or both of the content
and the digest could be lost. Simple digest comparisons are
not adequate even for internal fixity checks; cryptographic
techniques to ensure the integrity of the digest are needed.

The other half of an anti-entropy protocol is repair of any
damage or loss that is detected. Without a repair protocol,
damage will simply accumulate and eventually overwhelm
any replication scheme [4]. The LCAP protocol implements
repair (see Section 3), and can do so in a way that prevents
violations of copyright.

5.4 Module Interoperability
The LOCKSS team hopes shortly to start working, with

funding from the Library of Congress, towards making the
core LCAP version 3 anti-entropy protocol available for reuse
by other systems in the form of a Java library. This work
would initially be targeted towards the problem of audit-
ing content preserved in cloud storage systems. It will also
incorporate lessons from the LuKII project [36].

6. LESSONS

6.1 Audit
Funders pay for digital preservation in the present in the

expectation of receiving value, access to preserved content,
in the future. This business model is analogous to insurance,
and like insurance in the absence of regulation based on
auditing would be open to fraud, abuse and incompetence.

Discussions of how digital repositories should be audited
have focused primarily on ISO9000-style checklists of writ-
ten policies. Clearly, these are useful both internally, as
models of good policies, and externally, to distinguish be-
tween repositories that are adhering to current best mage-
ment practices and those that are not. It must be noted
that audits of this kind are time-consuming, expensive, and
cannot be automated. Their cost-effectiveness is yet to be
established.

Nevertheless, it is also important that repositories con-
taining digital objects be audited by third-party auditors to
confirm that (a) they contain the digital objects they are
supposed to, and (b) that the objects are undamaged. Even
the best-documented policies do not guarantee these essen-
tial attributes, nor will audits of written policies establish
that the attributes hold.

Clearly, the idea that a human could audit a system con-
taining terabytes of data by accessing a few documents and
reading them to see if they “looked OK” is laughable. A
successful digital presevation system must be extraordinarily
reliable; keeping a petabyte for a century with a 50% chance
that every bit survives requires a bit half-life roughly 60 mil-
lion times the age of the universe. Although the observed
reliability of state-of-the-art storage systems fails to meet
this goal by a factor of at least 109, it is still high enough to
pose a significant problem for auditors [30]. They have two
possible approaches; they can sample the archive’s content



or they can conduct a full audit of the entire content. To
detect the low rates of damage actually observed, let alone
the possibility of targeted attacks on particular objects, in
a timely fashion requires a full audit.

Thus, just as the system internally must conduct fixity
checks on every bit of each of its replicas at regular inter-
vals [4], so must external auditors. Since the majority of the
cost of these checks is in the I/O to access the objects [40],
the cost of external audits can be greatly reduced if they
can be combined with the internal fixity checks by accessing
the object once then performing both checks.

Even if the access restrictions on deposited content al-
lowed it, performing an audit by extracting most or all the
repository’s content and transferring it to a third-party au-
ditor is not feasible at the scale of current and future repos-
itories. Both the cost [18] and the time required would be
prohibitive. Further, experience shows that at large scales
such mass transfers of digital objects are themselves subject
to errors [42]. These errors would lead to false negatives,
the auditor would report that an object had been damaged
when in fact the copy in the archive was undamaged.

On the other hand, trusting the repository to self-audit
and report the results is not adequate. Recent financial
scandals such as Enron [20] and Lehman Bros. [44] show
all too clearly the problems caused by too credulous an au-
ditor. In an environment where a single data loss incident
could destroy a repository’s credibility, and thus its business
model, the temptation to cover up data loss is strong. De-
spite anecdotal reports of such losses, no repository appears
willing to report one. Suggestions [30] for an anonymized in-
cident reporting system similar to NASA’s Aviation Safety
Reporting System [24] have gone nowhere.

Suggestions are frequently made that third parties audit
repositories using the preserved hashes of digital objects [39].
When temptations to subvert the audit exist, this conven-
tional use of hashes is inadequate. To understand why, con-
sider the following example. The auditor knows that the
repository should contain digital object X and that the hash
of X = H(X) should be Y . The auditor asks the repository
what H(X) is. The repository replies Y . What has this
established? Merely that the repository knows H(X). It
could know this without containing a good copy of X. For
example, it could have ingested X, computed H(X), stored
H(X) and discarded X. When the auditor asks for H(X),
it replies with the stored value of H(X). Alternatively, the
repository could search the Web for keywords from X [27],
notice that someone else had posted X and H(X), and not
even bother with all that ingesting and computing.

Thus there is an apparent dilemma. It isn’t feasible to
extract the content, so the repository has to perform the
audit. But if the repository performs the audit, the result
isn’t credible.

The requirements for a third-party auditor of a large dig-
ital repository are thus:

1. The auditor must not trust the repository being au-
dited. Doing so renders the audit worthless.

2. The auditor must not depend on extracting content
from the repository. Doing so renders the audit unaf-
fordable.

3. The auditor must not depend on processing the con-
tent as it is being ingested into the repository. Since

experience shows that content ingest is a large part
of the cost of preservation, doing so would render the
audit unaffordable. It would also lock that content in
the repository into forever being audited only by the
one auditor in place during ingestion.

4. The audit must not depend on metadata, such as di-
gests, about the content being perfectly preserved in a
registry. Doing so turns the registry itself into a repos-
itory, which must itself be audited. In other words, the
auditor must be fault-tolerant.

5. Ideally, the audit checks should be share access to the
content with the repository’s internal fixity checks.

It appears that no existing audit technology satisfies all
these requirements. Some audit technologies are assessed
against them in Appendices A and B.

Section 2 showed that the network effects inherent in dig-
ital publishing made it likely that one digital preservation
system would dominate the market, and thus that all copies
of most preserved content would reside in a single organiza-
tion’s preservation system. If we add the requirement that
third-party audits be possible even in this case, it seems
probable that no possible audit technology can satisfy them.
Thus, to the obvious all-eggs-in-one-basket risks of a digital
preservation mono-culture must be added the likely impos-
sibility of performing a trustworthy audit of how well the
mono-culture is performing.

6.2 Transparency
The LOCKSS system was designed to address the prob-

lem that moving Web content somewhere else reduces its
value by breaking the links to it, and by reducing the rank-
ing search engines give it. Because the LOCKSS daemon
was designed to act as a proxy from the original publisher’s
web site, not as a substitute web server, the preserved con-
tent remained accessible at its original URL. Both internal
and external links continued to work without needing to
be rewritten. Rewriting links is time-consuming and error-
prone.

The LOCKSS system was transparent to readers, it just
made the content much more durable. The problem was
that, precisely because it was transparent, it did not visibly
provide any value. In fact, if it was installed and configured
as originally designed, only a Web expert could detect that
it was doing anything at all. This made it hard to persuade
libraries to pay for it. In order to get paid, the capability for
LOCKSS to act as a substitute Web server, and rewrite the
links, had to be added. This made access to the preserved
content not transparent, and added complexity to the user
experience.

The recent Memento proposal [45] addresses this issue
in a more comprehensive way by extending the underlying
HTTP mechanisms rather than, as with proxying or URL
rewriting, trying to evade them.

6.3 Licensing
In many common cases content interoperability is not

just a technical problem. If the content is copyright, and
even open access Web content must be treated as copyright,
transferring it might violate terms of the license agreement
under which it was originally preserved, or the DMCA, or
whatever more restrictive copyright law might be in force at
the time of transfer.



The choice of license is thus important for preservation.
Creative Commons licenses [6] permit all the activities nec-
essary for preservation including content transfer and should
be used if at all possible. Failing that, transfer to a successor
archive without further negotiation should be alowed under
the license; the “orphan works” problem [26] shows that by
the time such negotiations are needed they may no longer
be possible.

7. CONCLUSION
Experience with the LOCKSS system has shown that a

distributed, peer-to-peer system based on collaboration be-
tween libraries is a both a technically and an organization-
ally viable way to preserve subscription e-journals and other
copyright content. It has demonstrated content interoper-
ability with other preservation systems, and work is under
way to explore the other aspects of interoperability.

APPENDIX

A. AUDIT CONTROL ENVIRONMENT
The Audit Control Environment (ACE) [39] claims to im-

plement third-party audits of digital objects in repositories:

“our methodology allows a third-party indepen-
dent auditor to verify the integrity ... of an
archived digital object” [39]

It does so by storing an integrity token associated with each
digital object in the archive. The token contains the hash
of the object together with cryptographic information suf-
ficient to detect any corruption of or tampering with the
token, using technology due to Haber et al. [9].

An audit consists of a request from the third-party auditor
to the Audit Manager (ACE-AM) module to:

• evaluate the validity of the integrity token, and if it is
valid

• hash the object and compare the result with the hash
in the integrity token,

• report success or failure of the comparison to the au-
ditor (the Integrity Management System ACE-IMS).

To avoid the need to extract each object to be audited from
the repository and transmit it to the auditor, the Audit
Manager runs inside the repository itself:

“The ACE Audit Manager (ACE-AM) is local
to an archiving node whose main function is to
pass information between the archiving node and
the ACE-IMS. ... It then retrieves the digital
object’s integrity token, computes the hash of the
object, and sends this information to the ACE-
IMS.” [39]

As a result, the system as described fails to implement a
third-party audit. The auditor asks the repository to au-
dit itself; it trusts code it believes (apparently without evi-
dence) is running there to do so and report the results cor-
rectly. The auditor only receives a message from the reposi-
tory saying “this object is good, it hashes to H”5, it has no
independent evidence that the object is in fact good.

5Step 3 in the description of the operations of the Audit

Although as described [39, 40] ACE’s Audit Manager runs
in an untrusted environment local to the repository and thus
does not implement a credible third-party audit, the ACE
team also describe [16] a true third-party audit in which
the Audit Manager runs inside the auditor’s trusted envi-
ronment and each object to be audited is transferred there.
This is feasible for small collections, but for large collections
this requires sampling, rendering the audit unlikely to detect
loss or damage at the rates actually observed 6.1.

Assessing ACE against the requirements of Section 6.1
shows that it does not satisfy any of them:

1. ACE trusts the repository being audited, since the Au-
dit Manager runs in the repository’s environment.

2. If it is not to trust the repository being audited, it
must extract the entire content from the repository on
each audit.

3. ACE must see the content as it is being ingested into
the repository in order to compute the hash in the
integrity token without trusting the repository to do
so.

4. ACE depends on the repository preserving metadata,
the integrity token, undamaged indefinitely. ACE is
certainly capable of detecting damage to the token but
provides no mechanism for recovering from such dam-
age. It is thus not fault-tolerant.

5. ACE is not able to combine its hashing with the reposi-
tory’s internal fixity checks without trusting the repos-
itory.

B. SHAH ET AL.

Shah et al [37] describe a system that implements a third-
party audit of digital objects in a repository without trans-
ferring them to the auditor on each audit. They propose
that the repositories store both the data in encrypted form
and the key that encrypted it6. Each audit must there-
fore confirm that both the encrypted data and the key are
present and undamaged, but the auditor must not be able
to determine the key.

Simplifying Shah et al. greatly, digital object X is sent
to the repository in encrypted form together with its key
K. The repository publishes the hash of the encrypted data
H(E(K, X)), and a one-way cryptographic transform of the
key T (K). The owner of the data contracts with an au-
ditor to perform regular audits of object in the repository,
by sending it H(E(K, X)) and T (K). The auditor must

Trigger, a component of the Audit Manager running in the
repository, starts:

“If the integrity token is verified to be intact in
Step 2, the Audit Trigger computes a hash of
the given object and compares it to the one in
the integrity token.” [39]

It is thus easy to see that the repository could, by extract-
ing the hash from the integrity token, construct a correct
response to the Integrity Management System without hash-
ing the object, or even having a copy of the object to hash.
6There are concerns about the use of encryption for long-
term data storage. It does not appear essential to this
scheme that the data be stored in encrypted form, only that
it be encrypted with its key during ingest, extraction and
processing



reliably remember these values. The auditor initializes the
audit process by obtaining the encrypted object E(K, X)
from the repository. Note that the auditor does not know
K and cannot invert T () to obtain it, so does not know X.

The auditor computes H(E(K, X)) to confirm that the
repository currently has an undamaged copy of E(K, X).
It then generates and securely and reliably remembers a
set of N challenges. Each challenge consists of a random
number R and the corresponding hash H(R, E(K, X)). It
then discards E(K, X).

On each of the subsequent N audits, the auditor removes a
challenge at random from the set, sends R to the repository,
and waits for it to respond with H(R, E(K, X)). If this
response matches the challenge, the auditor knows that the
repository has an undamaged copy of E(K, X). It must
then confirm, using its remembered copy of T (K), that the
repository also has an undamaged copy of K. The details of
how this is accomplished without revealing K to the auditor
are too complex to describe here.

After N such audits, the set of challenges will be empty.
The auditor must be re-initialize the process by obtaining
the encrypted object E(K, X), generating and remember-
ing a set of N new challenges, and then again discarding
E(K, X).

This is a rigorous third-party audit that requires the audi-
tor to access the digital object only once in every N audits,
does not trust the repository being audited and does not
reveal the object to the auditor. It does depend on reliable
long-term storage of secrets (the remaining challenges) by
the auditor. Like ACE, it can be applied in cases where the
digital object is stored by only one repository, although such
cases should be deprecated.

Assessing this system against the requirements of Sec-
tion 6.1 shows that it fully satisfies one and partially satisfies
some others:

1. It does not trust the repository being audited.

2. It requires, on average, data equivalent to only 1/N
of the repository’s content (E(K, X)) to be extracted
per audit.

3. It must see data equivalent to the content (E(K, X))
as it is being ingested into the repository.

4. It depends on the auditor preserving metadata, the
challenges, undamaged for a period. It is thus not
fully fault-tolerant.

5. It can combine its hashing with the repository’s inter-
nal fixity checks.
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